Spacing between core recognition motifs determines relative orientation of AraR monomers on bipartite operators
نویسندگان
چکیده
Transcription factors modulate expression primarily through specific recognition of cognate sequences resident in the promoter region of target genes. AraR (Bacillus subtilis) is a repressor of genes involved in L-arabinose metabolism. It binds to eight different operators present in five different promoters with distinct affinities through a DNA binding domain at the N-terminus. The structures of AraR-NTD in complex with two distinct operators (ORA1 and ORR3) reveal that two monomers bind to one recognition motif (T/ANG) each in the bipartite operators. The structures show that the two recognition motifs are spaced apart by six bases in cases of ORA1 and eight bases in case of ORR3. This increase in the spacing in the operators by two base pairs results in a drastic change in the position and orientation of the second monomer on DNA in the case of ORR3 when compared with ORA1. Because AraR binds to the two operators with distinct affinities to achieve different levels of repression, this observation suggests that the variation in the spacing between core recognition motifs could be a strategy used by this transcription modulator to differentially influence gene expression.
منابع مشابه
Spacing and orientation of bipartite DNA-binding motifs as potential functional determinants for POU domain factors.
Investigation of the large POU domain family of developmental regulators has revealed a molecular mechanism by which highly related transcription factors sharing common DNA-binding motifs act to functionally discriminate their cognate DNA sequences. Studies of two classes of neuron-specific POU domain factors (III and IV) indicate that functional specificity on their native response elements is...
متن کاملCys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition.
The EPF family is a group of Cys2/His2zinc-finger proteins in petunia. In these proteins, characteristically long spacer regions have been found to separate the zinc fingers. Our previous DNA-binding studies demonstrated that two-fingered proteins (ZPT2-1 and ZPT2-2), which have spacers of different lengths, bind to two separate AGT core motifs in a spacing specific manner. To investigate the p...
متن کاملWhat Determines the Designability of the Protein Structures?
We examined what determines the designability of the lattice proteins from four points of view. First, whether the native structure is searched within all possible structures or within maximally compact structures. Second, whether the structure of the used lattice is bipartite or not. Third, the effect of the length of the chain, namely, the number of monomers on the chain. Fourth, the effect o...
متن کاملThe Origin of the Designability of Protein Structures
We examined what determines the designability of 2-letter codes (H and P) lattice proteins from three points of view. First, whether the native structure is searched within all possible structures or within maximally compact structures. Second, whether the structure of the used lattice is bipartite or not. Third, the effect of the length of the chain, namely, the number of monomers on the chain...
متن کاملDNA recognition by nuclear receptors.
The nuclear receptors constitute a large family of ligand-inducible transcription factors. The control of many genetic pathways requires the assembly of these nuclear receptors in defined transcription-activating complexes within control regions of ligand-responsive genes. An essential step is the interaction of the receptors with specific DNA sequences, called hormone-response elements (HREs)....
متن کامل